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In this paper, the authors have derived expressions for the collision integral applicable to degenerate semi-
conductors and corresponding to various carrier scattering mechanisms. These expressions have been used
to obtain expressions for the isotropic part of the carrier-velocity distribution function in different cases of
interest. The surfaces of constant energy have been assumed to be spherical, and the energy bands are
assumed to be parabolic; this simple model is applicable to a number of semiconductors of interest. The pres-
ent formulation avoids the use of an effective carrier temperature in the calculation of transport coefficients
and other properties of a degenerate semiconductor in the presence of a dc field.

I. INTRODUCTION

KNOWLEDGE of the collision term in Boltz-

mann’s transfer equation is essential for an ade-
quate analytical investigation of transport phenomena
in semiconductors—particularly at high electric fields.
In the absence of knowledge of this term for de-
generate semiconductors, the hot-carrier phenomenon
(at high electric fields) have been analyzed by using the
concept of effective carrier temperature, i.e., by assum-
ing the carrier-velocity distribution function to be a
Fermi-Dirac distribution function, corresponding to a
temperature higher than that of the lattice.!=® This
approach has led to many interesting results but suffers
from the weakness of the basic assumption that the
form of the isotropic part of the distribution function
remains unchanged on the application of the electric
field. In case of nondegenerate semiconductors the re-
sults obtained on the assumption of effective carrier
temperature are at considerable variance with those
obtained by using the appropriate isotropic distribution
function obtained by solving Boltzmann’s transfer
equation with the corresponding collision term.* Hence
in this paper the authors have presented a derivation of
the collision integral appropriate to degenerate semi-
conductors and corresponding to different collision
mechanisms. These expressions for the collision integral
may be used to investigate the hot-carrier transport
phenomenon in degenerate semiconductors by following
techniques analogous to those used for nondegenerate
semiconductors.

II. CARRIER-VELOCITY DISTRIBUTION
FUNCTION

For nondegenerate semiconductors, the collision
term is given by?®

<j—zf)c= / W(v',v) f(v')dv' — / W,v)fv)dv, (1)
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where W (V',v) represents the probability for the transi-
tion of the carrier velocity from ¢ to v in unit time. For
degenerate semiconductors one has to take into account
Pauli’s exclusion principle which implies that a state
already occupied by an electron is not available for
occupation to other electrons. Thus for degenerate
semiconductors we get

d
(d—f) - / W (v ) {7 L= f) T
- f W) /W=l @)

To proceed further we need to introduce in Eq. (2) an
explicit expression for the transition probability corre-
sponding to the relevant scattering mechanism.

III. ACOUSTICAL-PHONON SCATTERING

In this section we consider the case of scattering of
carriers due to the strain caused by the acoustic wave,
i.e., the deformation potential scattering. Shockley® has
shown that if we exclude spin-exchange scattering, the
matrix element for the transition is unchanged by the
inclusion of Pauli’s exclusion principle, when the band-
edge shift is linearly dependent on the strain. In the
following treatment we shall not consider the spin state
of the carriers. Following the procedure adopted by
Yamashita et al.” and after some computation along the
conventional lines® we obtain

df EIZm* 21 2k+2m*uy/h
G s e
dt ac 81r2puzh2k ¢=0 =0
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8 W. Shockley, Elecirons and Holes in Semiconductors (Van
Nostrand, Princeton, N. J., 1950), p. 538.

7J. Yamashita and M. Watanabe, Progr. Theoret. Phys.
(Kyoto) 12, 443 (1954).

8 Reference 4, pp. 215-20.
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where E; is the shift of band edge per unit dilation,
p is the density of the crystal, u; is the velocity of
acoustic wave, k is the wave vector of electron, q is the
wave vector of phonon, N, is the number of phonons
with wave vector, q and ¢ is the azimuthal angle of
scattering.

Substituting the equilibrium distributions

N o= [exp(fuwe/koT)—11
and

f=Lexp((E—Er)/keT)+1]

in Eq. (3) one obtains (9/9%)..=0 as is expected. & is
the Boltzmann constant.

For further analysis we make use of the diffusion
approximation

Jfe= fo(E)+keg(E). 4)

Substituting for fy from Eq. (4) in Eq. (3) and making
use of the fact that the phonon energy 7w, is generally
much smaller than the carrier energy, we may expand
Sorta, Grtq, and eFwe/ko?(=e%q) in a Taylor series. After
some further algebraic manipulations, we obtain

df E12m* 2k+2m*uiln
—) = dq ¢*L fo(1—fo)+ /']
<dt >ac 47rp1tzh2k</q=o ’ ’ ’

2k—2m*u /%
—/ dq ¢*Lfo(1—fo)+£']

=0

1 2k

- / dq g (ang) L (120 + "]
kT g=0

kT ; /% 3 > (5)
- F§ qaq ),
Tid® ) oo

where fo'=dfo/dx, fo''=d*fo/dx?, x=E/k,T, and pho-
non distribution is assumed to be in equilibrium.

After carrying out the integration the final expression
for (df/dt)a. has been obtained as follows:

(df) E?m* {lém“EkoT
dl ac_ Arpuih®k 3uit

[ E 17 <2 E 1 2 7
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2
___.01_.0 _—
L f)]

1 d
=Ci— —{a? 0/ oll—Jo —voar!/? F8,
Ca\/x dx{x Lfo'+fo(1—fo) 1} «'%krg, (0)

where
2\/2E12('m*)5/2(k0T)1/2
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and

\/jEl2m*3/2(koT)3/2
Voa= .
Wpu12h4
On the other hand, (df/dt)sie1a is written as usual,®

df eFr2 1 d .
(5) - cemr—w]
dt / tiera hL3 xdx m*koT

where —e is the electronic charge and F is the externally
applied dc field. The Boltzmann’s transfer equation for

the equilibrium state is
af df
Gell)e o
dt/. \dt /i
Substituting from the Egs. (6) and (7) in Eq. (8)

and separating isotropic and anisotropic parts, we
obtain

Ca
—{@*fo" +[20+a*(1=210) ] fo'+22 fo(1— fo) }
V%

+ 2eF 1 d( 12)=0 (0)
— —— —(x%%g) = 9
h vV dx
and
1/2 ek 1o (10)
vouxlltg= —fo . 0
’ 8 m*k()T ’

From Egs. (9) and (10) we obtain

(e+p) o'+ [24+2(1—=2fo)+p/x]fd
+2f(1—fo)=0, (11)

where

3v0aCam* kT
The solution of Eq. (11) is
f0: [e[x‘—ﬂ—P In(z+p)1 1]—1’ (123)

where 7 is a constant, and it can be interpreted as
dimensionless Fermi energy Er/koT. An additive con-
stant on the right-hand side of the expression for f,
given by Eq. (12a) is taken to be zero, so as to satisfy
the condition that f, vanishes when «x tends to infinity.

For the nondegenerate case n — — o, we may neglect
1 in comparison of el*=m» In(+2)1 and hence

foe (xt-p)re, (12b)

which is the result obtained by Yamashita ef ¢l.” In the
case of weak dc fields p can be seen to be much smaller
than the average value of x, and hence we may write

dfo
=t =0+9(-)
9p / p=o
1 P Inxes—

Tl (b1

(13)
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In the case of high fields p is much greater than the
average value of x and hence Eq. (11) can be approxi-
mated by

pf " +x(1=2f0)+p/x]f+2fo(1— fo)=0
Jo= (eGP /2o 1)1
IV. PIEZOELECTRIC SCATTERING

or
(14)

Laikhtman® has obtained an expression for the
distribution function of carrier velocities in a non-
degenerate piezoelectric semiconductor subjected to a
dc field. In this section his analysis has been modified
to take into account Pauli’s exclusion principle so that
the result will be valid for degenerate piezoelectric
semiconductor. The matrix element for either emission
or absorption of phonons is taken to be the same as that
for the nondegenerate case, as was done for the acoustic
mode in Sec. III. Thus we find

(df =] Voheg, (15)
d;>pe‘ o L LA+ 1o ) —opex rg,

where
16V27 (m™*) 3/ 20,2282

X212 (koT) 12
8VZmm* 12628 (feg T) /2

Vope= px2h2 )

X is the dielectric constant, p is the density of the semi-
conductor, B is the piezoelectric tensor, and #%; is the
velocity of sound. 8 is assumed isotropic for simplicity
in the analysis. From Egs. (15), (7), and (8), we obtain

Che 1
== Lo+ L= f) T} = — — — (%) (16
Uad x{x[f + fol f)]}+ 3% ved (x ) (16)

and

eFh
=/ A7)

m¥koT

1/2

Vopex

Eliminating g between Egs. (16) and (17), we obtain
(1+pex) fo'+ fo(1— fo) =0

Jo={exp[ps In(1+px) —n]+1}7,
Do=262F2/300pCpi*koT .

For nondegenerate semiconductors — — e and hence
Eq. (18a) reduces to

Joe (1 pex)t/ee (18b)
which is the result obtained by Laikhtman.® It has been
pointed out by Laikhtman?® that f° can be normalized

9B. D. Laikhtman, Fiz, Tverd. Tela 6, 3217 (1964) [Soviet
Phys. Solid State 6, 2573 (1965)].

or
(18a)
where
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only for fields F smaller than some fixed valued deter-
mined by the parameters of the semiconductor. The
case with fo defined by Eq. (18a) is similar.

For the case of #-InSb and in the temperature range
2-10°K piezoelectric scattering mixed with acoustical-
phonon scattering explains very well the transport
properties.>!® The complete collision integral in this
case is given by

af af af
DA o
dt/c \dt/ae \dt/pe
From Egs. (8), (19), (6), (15), and (7) we obtain
Co A=)
J dx{x Jo foc Jo
+—ﬁ{x[fo'+fo<1—fo>]}
vV
+26F 1 (3/2) 0 (0)
3% Vxdx e
and
voa  2g+vopex TV 2g= (eF#/m*koT) fo' . (21)
Eliminating g between Egs. (20) and (21) we obtain
4
(x+cl+ )fo'+(x+C1) fol—f0)=0
14-bx1
or (22)
fom (e 1),
where
Cpe Vope
C1=—, b=—,
Ca Voa
@ pdx
L= /
(A4bdx ) (x+Cr)+p
_ p
(4bC1—A2)12
(2x+4)
Xtan~l———— for (42—4bC1)<0
(46C;— A2) 12
»A
=— , for (42—4bCy) =0
2x+A4
.
2V A2—4pC,
204+A4—NA*—4C,
Xln , for (42—4b6C1)>0

20+ A+V A2—4C,
and
A= (b+p+C).
10 R, J. Sladek, Phys. Rev. 120, 1589 (1960).
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V. IONIZED IMPURITY SCATTERING

Yamashita!' and Sanchez!? have studied the warm-
electron properties of heavily doped #-Ge using the
concept of an effective carrier temperature. To investi-
gate the effect of ionized impurity scattering on the
isotropic part of carrier-velocity distribution function,
we make use of the fact that this scattering is essentially
elastic, and hence we may neglect its contribution to
(df/dt).. For spherical constant-energy surfaces there
exists a relaxation time 7; given by Conwell-Weisskopf
formula’® as follows:

\/2‘ m*l/2€s2E3/2

o eNGE)

where G(E)=1n[ 1+ (e,/e2N ;1 /3)2E?], ¢, is the dielectric
constant of the medium, and N is the concentration of
ionized impurity. Whenever degeneracy is achieved by
lowering the temperature of the crystal and by light
doping, G(E) is universally approximated by a constant
and hence 7;< E*2 But as discussed by Blatt* and
Conwell® for high and low temperatures, the function
G(E), though slowly varying, should not be approxi-
mated by a constant. In this case it will be more
appropriate to take 7; < E which we shall consider in the
following treatment, and thus write

(23)

vi=vox !,
where
7r84AT¢

Vo = .
0 V2(m*) 2 2(ko T3

In the case of energy relaxation of the carriers by
deformation potential scattering the effective collision
frequency can be written as

»=00ax 2+ vosx!

=v @t/ 2(14dx3/2), (29)
where
d=v0;/voa-
From Egs. (8), (6), (24), and (7) we obtain Eq. (9) and
1/2(1+d 3/2) R ’ ( 5)
Voo x32)g= . 2
’ m*konO

Eliminating g between Egs. (9) and (25), we obtain

»
— )/ o1—fo)=
<x+1+dx‘3/2>f Hafoll=fo)=0 (26)

or

fo= (e,

11J, Yamashita, The University of Tokyo, Japan, Technical
Report Ser. A.N.O. 5, 1960 (unpublished).
12 M. Sanchez, Solid-State Electron. 6, 183 (1963).
(1135%). M. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388
950).
14T, J. Blatt, Phys. Rev. 105, 1203 (1957).
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where
xV2dx

[2=p/ x3/2+px1/2+_d- '

In the case when
xdx

Vi=Voix_3/2, Iz=?/ —.
w?+xpt-d

For the case of nondegenerate semiconductor, f, given
by Eq. (26) reduces to

fO Y marth

In the absence of ionized impurity scattering, i.e.,
d=0, fo reduces to the form given by Eq. (12b), first
derived by Yamashita ef al.”

VI. NONPOLAR OPTICAL-PHONON SCATTERING

For the case of #-Ge the energy loss of carriers to the
optical mode of lattice is important at room tempera-
ture and even for low fields. The following considera-
tions will apply at temperatures greater than the Debye
temperature and at any value of heating field or at the
lower temperature, but with sufficiently high heating
fields such that the mean energy of the carriers is
greater than the optical-phonon energy. We take the
matrix element for either emission or absorption of the
optical phonon, such as in the case of nondegenerate
semiconductors, as was done for the acoustical-phonon
scattering in Sec. IIL.'® Including Pauli’s exclusion
principle we obtain the following collision term for
nonpolar optical mode of the lattice scattering:

(i{> = Ca i{ (e20+1)wox fo”
dt/op Vxdx
+L (e D@o+2(e0— (1 —2f0) I fo'
+2(e7—1) fo(1— fo)} —vopx'/*krg,

where xo=#wo/koT, the dimensionless energy of the
optical phonon, and

(27)

Corm (m*)312 E1op 20> 1 ’

2V2rhPoui (koT) V2 er0—1

(m*)3*(RoT')** Eop® D2Kur?
e V2 htou® e wo? 7

D, is the coupling constant between electrons and non-
polar optical mode of lattice vibration, and K is the first
reciprocal vector of the lattice. Calculations including
all the three processes (e.g., ionized impurity scattering,
acoustical-phonon scattering and optical-phonon scat-
tering) were carried out by Sanchez® for fields from
zero to several #V/cm for highly doped germanium

15 Reference 4, p. 185.
16 Reference 4, p. 150.
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using a Maxwell-Boltzmann distribution function with
effective carrier temperature. We can explicitly evaluate
the form of carrier-velocity distribution function as
follows by including Pauli’s exclusion principle. From
Eqgs. (27), (6), (23), (8), and (7) we obtain

Cod
\/xdx{x fo'+fo(l—fo) 1}

Cop d evo+4-1
+———{x[fo' —-foa—fo]}(em—l)

V' dx er0—1
+26F 1 (52 =0 (28)
- (x%%g) =
3% Vx
and
) ) eFh , 29)
vouX ¥ (14a-+da=3?)g= ,
’ ( § m*kono
where

a= Vop/Voa .

Eliminating g between Eqs. (28) and (29) we obtain

(JC+C2+ ? ) f o/
1+a+da—32
%o e%0+1
+<x+C2— 1>f0(1 -—fo) =0 (30)
er0—
or
1
Cerinhy]

3997

where
Cop(e¥0—1)
2=,
Ca
/"‘ pF+Co(1—3xo(em+1) /(e —1)) (1 +a+dx—%?)

P+ (@+Co)(1+a+da—3/2)

3=

dx

/‘z pdx
(1 +a+da32) (x+Co)+p

for xp1.

VII. CONCLUSIONS

The above formulation determines the form of the
carrier-velocity distribution function in degenerate
semiconductors in the presence of a dc field. It avoids
the use of effective carrier temperature in the calculation
of transport and other properties of degenerate
semiconductors.

The next part of this series will deal with the investi-
gation of transport phenomena at high electric fields,
using the collision integral and carrier-velocity distribu-
tion function derived in this investigation.
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